2x(1-x)-x(x+2)=2x^2-15

Simple and best practice solution for 2x(1-x)-x(x+2)=2x^2-15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x(1-x)-x(x+2)=2x^2-15 equation:



2x(1-x)-x(x+2)=2x^2-15
We move all terms to the left:
2x(1-x)-x(x+2)-(2x^2-15)=0
We add all the numbers together, and all the variables
2x(-1x+1)-x(x+2)-(2x^2-15)=0
We multiply parentheses
-2x^2-x^2+2x-2x-(2x^2-15)=0
We get rid of parentheses
-2x^2-x^2-2x^2+2x-2x+15=0
We add all the numbers together, and all the variables
-5x^2+15=0
a = -5; b = 0; c = +15;
Δ = b2-4ac
Δ = 02-4·(-5)·15
Δ = 300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{300}=\sqrt{100*3}=\sqrt{100}*\sqrt{3}=10\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{3}}{2*-5}=\frac{0-10\sqrt{3}}{-10} =-\frac{10\sqrt{3}}{-10} =-\frac{\sqrt{3}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{3}}{2*-5}=\frac{0+10\sqrt{3}}{-10} =\frac{10\sqrt{3}}{-10} =\frac{\sqrt{3}}{-1} $

See similar equations:

| 4x−18=18 | | 4x2-24x-36=0 | | 7x²-10x+1=0 | | 9b×9=27 | | Y=12-10y | | 2x^2+3x+40=0 | | F(x)=-6+116 | | 5x2-4x+8=0 | | 2y-7y=4y | | -2y+5/3=26/3-y | | (2y-5=y+2) | | 7x+14=5+4x | | 9x²-12x+13=0 | | s2-25=-5 | | 8a-13=4a+31 | | 3x+5+x5=2x-15x-9 | | {x}^{9}-5x+4=0 | | 4^(2x-1)=32 | | 4x^2-9x^2-15x+3=0 | | (3x+5)+x5=(2x-15)x-9 | | 4x-9x^2-15x+3=0 | | 55x=54x | | 4(2y+5)=7y+6 | | Q2=5p+3=2p+9 | | 36x/42=30 | | 3(x+3)²+5(x+3)-2=0 | | 3(x+3)^2+5(x+3)-2=0 | | x2x+9=27 | | 5x−6=2x+18 | | 9x-5=11x-3 | | 6x•5=60 | | -6a+3=-3(2a=4) |

Equations solver categories